Deep Learning Based Robust Text Classification Method via Virtual Adversarial Training
نویسندگان
چکیده
منابع مشابه
Virtual Adversarial Training for Semi-Supervised Text Classification
Adversarial training provides a means of regularizing supervised learning algorithms while virtual adversarial training is able to extend supervised learning algorithms to the semi-supervised setting. However, both methods require making small perturbations to numerous entries of the input vector, which is inappropriate for sparse high-dimensional inputs such as one-hot word representations. We...
متن کاملGenerating Text via Adversarial Training
Generative Adversarial Networks (GANs) have achieved great success in generating 1 realistic synthetic real-valued data. However, the discrete output of language model 2 hinders the application of gradient-based GANs. In this paper we propose a generic 3 framework employing Long short-term Memory (LSTM) and convolutional neural 4 network (CNN) for adversarial training to generate realistic text...
متن کاملRobust Deep Reinforcement Learning with Adversarial Attacks
This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered attack successfully degrades the performance of DRL algorithm. We further improve the attack using gradient information of an engineered loss func...
متن کاملAdversarial Multi-task Learning for Text Classification
Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task lear...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2981616